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A Powerful and Robust New Linkage Statistic for Discordant Sibling Pairs
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Departments of 1Biostatistics and 2Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh

Previously, Szatkiewicz and colleagues evaluated the performance of a wide variety of statistics for quantitative-
trait–locus linkage, using discordant sibling pairs. They found that the most powerful statistics, in general, were
a score statistic and a “composite statistic.” However, whereas these two statistics have equal power under ideal
conditions, each has limitations that reduce its power in certain circumstances. The score statistic depends on
estimates of trait parameters and can lose a lot of power if those estimates are incorrect. The composite statistic
is not sensitive to trait-parameter estimates but does depend on arbitrary weights that must be chosen on the basis
of the ascertainment scheme. In this report, we elucidate the algebraic relationship between the score and composite
statistics and then use that relationship to suggest a new statistic that combines the best properties of both. We
call our new statistic the “robust discordant pair” (RDP) statistic. We report simulation studies to show that the
RDP statistic does, indeed, have all of the strengths and none of the weaknesses of the score and composite statistics.

Szatkiewicz et al. (2003) used simulation studies to eval-
uate the type I error and power of various statistics for
QTL linkage, using discordant sibling pairs. They con-
sidered a number of statistics from the literature, as well
as several new variants. The bottom line was that three
statistics were best, by virtue of having correct type I
error rates across the board and having power higher
than that of other statistics for all or most trait models
tested. All three of those statistics are what we call
“combination” type—that is, they combine linkage in-
formation from two sources: (1) the marginal identity-
by-descent (IBD)–sharing distribution and (2) the cor-
relation between IBD sharing and trait values. This is in
contrast to IBD-sharing statistics, which only use infor-
mation from the first source, and to “correlation-based”
statistics such as Haseman-Elston regression (Haseman
and Elston 1972), which only use information from the
second source.

One of the three best statistics found by Szatkiewicz
et al. (2003) is a score statistic. Tang and Siegmund
(2001) derived the basic statistic, and Szatkiewicz et al.
(2003) proposed a variant (“SCORE3” in their termi-
nology) that has an entirely empirical variance in the
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denominator. The formula for the score statistic with the
empirical variance estimate is

1� A p �i i( )2
,

21 12� ( )� A � p �i i( )[ ]n 2

where n is the number of (independent) sibling pairs, pi

is the estimated IBD-sharing proportion for pair i, and

Y Y 4riS iDA p � � .i 2 2 2(1 � r) (1 � r) 1 � r

The parameter r is the sibling correlation for the trait.
YiS and YiD are the squared trait sum and the squared
trait difference, respectively, and are calculated on the
basis of trait values that are standardized to have a mean
of zero and a variance of one. That is, if Xi1 and Xi2 are
the trait values for pair i, then

2( ) ( )X � m X � mi1 i2
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and

2( ) ( )X � m X � mi1 i2

Y p � ,[ ]iD
j j

where m is the population trait mean and j is the pop-
ulation trait SD. Thus, the formula for Ai effectively
involves three population trait parameters: the mean, the
variance, and the sibling correlation. Szatkiewicz et al.
(2003) showed that, with good estimates of these three
parameters, this statistic has approximately the maxi-
mum possible power for reasonably Gaussian trait mod-
els. However, if the parameters (particularly the mean)
are not well estimated, the score statistic can lose a sub-
stantial amount of power.

The second good statistic for discordant pairs is al-
most identical to the score statistic. It is one version of
the HE-COM statistic proposed by Sham and Purcell
(2001). Sham and Purcell proposed two different sta-
tistics under the name “HE-COM.” Szatkiewicz et al.
(2003) referred to these two statistics as “S&P1” and
“S&P2.” Here, we use the more informative names
“HE-COM-correlation” and “HE-COM-combination.”
HE-COM-combination has the same numerator as the
score statistic— —but uses a slightly dif-� A (p � 1/2)i i

ferent variance estimate in the denominator. HE-COM-
correlation has the numerator , where Bi is¯� B (p � p)i i

equal to the first two terms of Ai. The important dif-
ference between HE-COM-combination and HE-COM-
correlation is the use of 1/2 versus to mean-center thep̄

IBD sharing. The use of makes the statistic indepen-p̄

dent of any difference between and 1/2 and thus cre-p̄

ates a correlation-based statistic. The use of 1/2 creates
a combination statistic, by drawing additional power
from any deviation between and 1/2. For a populationp̄

sample, should be ∼1/2, so the two statistics are es-p̄

sentially the same, but, for discordant pairs, the differ-
ence is substantial (Szatkiewicz et al. 2003).

The third statistic that performed well in the studies
by Szatkiewicz et al. (2003) is a variant of the “com-
posite statistic” originally proposed by Forrest and
Feingold (2000). The composite statistic is a weight-
ed average of the Haseman-Elston regression statistic
(Haseman and Elston 1972) and an IBD-sharing statis-
tic. The Haseman-Elston statistic is based on the squared
trait difference, , which does not involve any2(X � X )i1 i2

population trait parameters. Because the composite sta-
tistic does not depend on trait parameters, it avoids the
parameter misspecification problems of the score statis-
tic. However, for the composite statistic to have power
as high as that of the score statistic, the weights for the
two components must be intelligently chosen on the ba-
sis of some knowledge of the ascertainment scheme. For-
rest and Feingold (2000) showed that it is not too dif-

ficult to find good weights if the ascertainment scheme
is known, but it would be better if the weighting issue
could be eliminated completely, so that it would not be
necessary to know the ascertainment scheme.

We show here that the score statistic can be algebra-
ically decomposed into a correlation-based statistic plus
an IBD-sharing statistic, with weights that are data de-
pendent. This helps to explain the relationship between
the score statistic and the composite statistic and also
suggests a statistic that combines the best properties of
both. The decomposition is as follows.

1� A p �i i( )2
Score statistic p

21 12� ( )� A � p �i i( )[ ]n 2

1
( )¯ ¯� A p � p �� A p �i i i ( )2

p
21 12� ( )� A � p �i i( )[ ]n 2

( )¯� A p � pi i

p
21 12� ( )� A � p �i i( )[ ]n 2

1
p̄ �� Ai 2

� .( )2�n� A 2i 1 1� � p �i( )[ ]2n 2

The first term of the decomposed score statistic is es-
sentially HE-COM-correlation, with an empirical vari-
ance estimate rather than a regression-based variance
estimate in the denominator. The second term is an IBD-
sharing statistic, again with an empirical variance esti-
mate in the denominator. The two components are
weighted by a factor that is large when the Ais have a
large absolute value (as in discordant pair samples) and
that is zero when the Ais have a mean of zero (as in
population samples).

Viewed through the lens of this decomposition, the
score statistic and the composite statistic have only two
differences between them. The first difference is that the
composite statistic uses arbitrary fixed weights for the
two components, whereas the score statistic uses data-
dependent weights that automatically adapt to the sam-
pling scheme. For example, if both statistics were applied
to a population sample, the composite statistic would
perform quite poorly, because it would incorporate ran-
dom noise from the IBD-sharing statistic, whereas the
score statistic would automatically adjust the weight on
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Table 1

Power for EDSPs at a p 0.01

STATISTIC

POWER (%) UNDER MODEL

1 2 3 4 5 1′ 2′

Score:
Correct parameters 87 93 18 94 81 78 79
Mean estimate low by 1 SD 86 93 18 93 80 75 74
Mean estimate high by 1 SD 88 94 21 93 80 76 77

Compositea:
Equal weights 79 78 22 81 62 66 71
Extreme weights 86 94 12 94 82 84 87

RDP 87 93 19 93 81 78 79

a Forrest and Feingold (2000) recommended equal weights for
MDSPs and the weights 0.259 and 0.966 for EDSPs.

Table 2

Power for MDSPs at a p 0.01

STATISTIC

POWER (%) UNDER MODEL

1 2 3 4 5 1′ 2′

Score:
Correct parameters 72 77 12 84 79 42 64
Mean estimate low by 1 SD 59 65 12 79 77 17 28
Mean estimate high by 1 SD 74 77 15 78 67 37 42

Compositea:
Equal weights 73 77 11 83 78 49 74
Extreme weights 58 67 4 79 72 53 66

RDP 71 76 12 84 78 42 67

a Forrest and Feingold (2000) recommended equal weights for
MDSPs and the weights 0.259 and 0.966 for EDSPs.

the IBD-sharing statistic to zero and, thus, would still
have maximal power. If both statistics were applied to
a sample of discordant pairs, the score statistic would
again automatically adjust the weight to be optimal, no
matter what the ascertainment rule was, whereas the
composite statistic would only perform well if we had
chosen a good weight beforehand.

The second difference between the score statistic and
the composite statistic is that the score statistic is based
on the trait function Ai, which involves the trait differ-
ence, the trait sum, and the three population trait pa-
rameters. The composite statistic, by contrast, is based
on the original Haseman-Elston regression procedure
and uses the trait function , which does not2(X � X )i1 i2

involve the trait sum or the trait parameters. For most
types of samples, the function Ai contains more infor-
mation than the squared trait difference alone (Sham
and Purcell 2001), but our previous simulation results
showed that, for discordant pairs, the information is
almost equal (Forrest and Feingold 2000; Szatkiewicz et
al. 2003). This is also clear in considering the expression
Ai at a purely arithmetic level; for discordant pairs, the
standardized trait sum is very small, and Ai is really
determined by the trait difference. For example, for
model 1, we averaged the ratio of the squared sum term
(i.e., the first term) to the whole of Ai for different kinds
of samples. For an extreme discordant sibling pair
(EDSP) sample, the average ratio was .006. For a mod-
erately discordant sibling pair (MDSP), the average ratio
was 0.04. By contrast, for a sample of concordant pairs,
the average ratio was 0.96, indicating that the trait sum
is the dominant term for concordant pairs.

If we combine the data-dependent weights of the score
statistic with the parameter-independent trait function
of the composite statistic, then we should get a new
statistic with the best features of both. We propose the
following statistic, which we term the “robust discordant
pair” (RDP) statistic:

12( )�� X � X p �i1 i2 i( )2
,

21 14� [ ]( )� X � X � p �i1 i2 i( )[ ]n 2

which is the same as the score statistic but with
substituted for Ai. We have included the2�(X � X )i1 i2

negative sign so that positive values of the statistic cor-
respond to the alternative hypothesis. Note that the RDP
statistic has the same numerator as the Haseman-Elston
statistic, except with 1/2 instead of . The relationshipp̄

between the RDP statistic and the Haseman-Elston sta-
tistic is analogous to the relationship between HE-COM-
combination and HE-COM-correlation.

We updated the simulation studies done by Szatkiew-

icz et al. (2003), to include the RDP statistic. The meth-
ods were described in detail in that article (Szatkiewicz
et al. 2003). In the present study, table 1 reports power
(based on 1,000 replicates) for selected statistics applied
to EDSPs—defined as pairs with one sibling in the top
10% of the trait distribution and the other sibling in the
bottom 10%. Table 2 shows the analogous results for
MDSPs—defined as pairs with one sibling in the top
35% of the trait distribution and the other sibling in the
bottom 35%. Trait models 1–5 are simple mixture-of-
normals models, with “increaser” allele frequencies of
0.1 (see Szatkiewicz et al. [2003] for model details).
Models 1 and 4 are additive, models 2 and 5 are dom-
inant, and model 3 is a recessive model that has sub-
stantial skewness and kurtosis. Models 1′ and 2′ are non-
Gaussian models that were created by applying a signed
square transformation to models 1 and 2. All statistics
shown have correct type I error rate of 0.01 by our
simulations (results not shown).

Several important features of the statistics are evident
from table 1. First, the score statistic with correct pa-
rameter estimates, the composite statistic with extreme
weights, and the RDP statistic all have essentially equal
power for the somewhat Gaussian models (models 1, 2,
4, and 5) (see table 1). The composite statistic with equal
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weights has much less power, underscoring the impor-
tance of the weights. For EDSPs, the score statistic does
not lose much power if the mean is misspecified, because
most of the linkage information comes from the IBD-
sharing. In table 2, the results for MDSPs show essen-
tially the same features of the statistics as those described
for EDSPs (provided that, for MDSPs, equal weights are
used for the composite statistic), except that the score
statistic does lose a substantial amount of power when
the mean is misspecified. We have not shown results for
the misspecification of the other parameters. The effects
of misspecifying other parameters follow similar pat-
terns to the effect of a misspecified mean, but are smaller
overall (see Szatkiewicz et al. [2003] for partial results).

The performance of the statistics for the non-Gaussian
models requires separate comments. The score statistic
is based on the likelihood of the data, under the as-
sumption that the trait model is normal (not even a
mixture of normals), so it should not necessarily perform
well for non-Gaussian models. This is also somewhat
true for the RDP statistic, whose form follows that of
the score statistic. For models 1′ and 2′, the composite
statistic, which does not depend on the normality as-
sumption, does have higher power than the score statistic
and the RDP statistic. This is not true, however, for
model 3, which is also substantially skewed. We feel that
the behavior of the statistics for non-Gaussian trait mod-
els still requires further study. It is not clear what types
of non-Gaussian trait models are the most realistic and
important, and it is also not clear how various features
of the models and statistics interact to determine which
statistic is the most powerful.

Overall, we recommend our new RDP statistic as the
best choice for studies of discordant sibling pairs, in
almost any situation. It has power equal to that of the
score and composite statistics but is robust to parameter
misspecification and does not depend on arbitrary
weights. For EDSPs, it is probably fine to use the score
statistic or even the IBD-sharing statistic instead, but

using the RDP statistic adds an extra measure of ro-
bustness at no cost in power. For more moderately se-
lected samples, the RDP statistic is clearly preferable.

A few caveats are in order. First, further study is re-
quired before we can make recommendations about sta-
tistics for substantially non-Gaussian trait models; how-
ever, on the basis of our results to date, the RDP statistic
and the composite statistic (with appropriate weights)
seem to be the best choices. Second, we should note that
neither the RDP statistic nor the composite statistic is
appropriate for combinations of discordant and con-
cordant pairs, though the score statistic is appropriate.
Statistics for mixtures of discordant and concordant
pairs will be addressed in future work (Szatkiewicz and
Feingold, in press).
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